
TABLE 2 

deg 

30 
60 
90 

t20 
i50 

HQ 

7,4 
4,0 
2,5 
t,5 
0,66 

IQ 

0,33 
0,39 
0,47 
0,57 
0,70 

GQ 

0,t2 
0,i7 
0,25 
0,35 
0,5t 

U H M  

TABLE 3 

deg m 

0,45 
0,53 30 
0,60 60 
0,66 90 

t20 
0,67 t50 

Water 

4,2 t,25 . 
2,3 t,7 
t,4 1,9 
0,84 2,t 
0,37 2,i 

Nickel 

2t 0,59 
t t  0,69 
6,9 0,79 
4,t 0,86 
t,8 0,86 

As an example we calculate the flow parameters for rivulets of water over a vertical 
wall and rivulets of molten nickel on a rapidly rotating horizontal disk. For water 9 = 103 
kg/m ~, v = 10 -6 m2/sec, a = 9.8 m/see 2, Q = i0-" ma/sec, and for nickel at 1800 K, 9 = 6.4" 
10 -7 m2/sec, disk radius is i0 -I m, and the number of revolutions is 104.7 rad/sec, Q = i0 -9 
m3/sec (Table 3). The radio of Coriolis to centrifugal acceleration is estimated from 

2or __ 2v 2(  ~'~ )I]2 UQ(~) = 2 (  Q.~I/~ 
o ~ r  - -  o - 7  - =  - -  o - - 7 - -  \ v r /  UQ(~),  a = ~ 2 r .  

The maximum of ratio 2v/mr = 0.16 is achieved with ~ = 150 ~ . In [I, 2, 5, 6] the two- 
dimensional w~locity field is found in the form v = v[y/6(x)], where the parabolic profile 
is taken from the solution for the unidimensional problem for a film. With this choice of 
velocity field the boundary condition at the free rivulet surface is not observed. 

2. 

3. 

4. 

5. 
6. 
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PERTURBATION METHOD COMPUTATION OF THE MAXIMAL GROUP VELOCITIES OF 

INTERNAL WAVES IN A STRATIFIED MEDIUM WITH MEAN SHEAR FLOWS 

V. A. Borovikov and E. S. Levchenko UDC 551.466 

Propagation of internal gravitational waves excited in a stratified fluid layer -H < 
z < 0, -~ < x, y < ~ with mean horizontal shear flows is described by the equation [I] 

Lu(t,  x, y ,  z, Zo) = Q(t, x, y ,  z, Zo), u = O(z = O, - - H ) ,  ( 1 )  

where the operator is 

L= t ~ La~+--+a. 2 -~TV=~+K,W +m ~+~ ; 
D a u a a 

D--t = o-T + Ox + V--~y ; 

O = U(z), V = V(z) are the velocity components of the mean flow U = {O, V, 0} at the horizon 
z, and N(z) is the Brunt-V~is~l~ frequency. The Boussinesq and solid covers are used. The 
Miles stability condition Ri(z) = N2(z)/[(Uz )2 + (Vz)2] > 1/4 is assumed satisfied and 
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assuring that the internal waves cannot be exchanged with mean shear energy flows. 

The Green's function of the boundary value problem (i) is found in [2], i.e., its solu t 
tion F(t, x, y, z, z 0) for Q = 6(t)6(x)6(y)6(z - z 0) which vanishes identically for t < 0 
and the asymptotic of F is determined as t + ~ and for fixed x/t = Ux, y/t = Uy. A Fourier 
transform in the variables t, x, y i s used to find r, which reduces the problem to deter- 

( o)o mining the vertical Green's functionG((o, ~, ~t, z, z0): L 0 6o, ~, ~, z, ~ = (c0-- [)~ ~ (z-- z0) , G = 0 

(z = 0, -H). Here L 0 is the Taylor-Goldstein operator L0u---- (co--/) Uzz + [k~(N ~ -- (0) -- /)z) +/,z 
((o--/)]u; ~ ----/(z) = %U(z) ~- ~V(z); k' ----- ~ ~-~t ~ The function G as a function of ~0 has simple 
poles for real ~ = ~n(X, ~) which are the eigennumbers of the boundary value problem 

[ \ 
t(o"' 0, = o , -  (2) 

and a s l i t  on t h e  r e a l  ~ a x i s  c o n n e c t i n g  t h e  b r a n c h  p o i n t s  ~----rain/  and (o = m a x / .  
z z 

The passage to the function F by means of the inverse Fourier transform yields the ex- 
pression 

r = Y,r.  + r,,, (3)  
l l  

where r n corresponds to the contribution from the n-th pole ~ = ~n(X, ~) of the function G 
and F H is the integral of the function G along the slit. The function FH turns out to be 
negligibly small for t >> 1 compared to F n of the form 

co 

Fn =Im S S An (~, ~, z, Zo) exp i [~x + py -- (on (~, p) t] d~dp. (4) 
--oo 

The expression for A n is presented in [2] (it is not required later), and ~n is the eigen- 
number of the boundary value problem (2). Summation over all (on(l, ~t)< mini(z) is taken in 
(3); these eigennumbers are enumerated in increasing order. 

To find the asymptotic F n for t, Ixl, IYl >> i we set x = at, y = ~t, t >> i, i.e., we 
seek the asymptotic F n for t >> 1 at the observation point x, y receding from the origin at 
the velocity IJ = (~, 6)- Then the phase function in (4) is written in the form S = t(~X + 
~U - ~n(X, U)) and its stationary points are determined from the equations 

= t - 0~ ~= -y = - -  (5) ' t O~ " 

The s e t  o f  p o i n t s  a = x / t ,  ~ = y / t  in  t h e  p l a n e  a ,  $ ( i . e . ,  t h e  domain a = x / t ,  $ = y / t  
i n  t h e  s p a c e  t ,  x ,  y )  f o r  wh ich  t >> 1 and t h e  s y s t e m  (5)  have  a s o l u t i o n  which  i s  n a t u r a l l y  c a l l e d  
t h e  wave zone .  I f  x / t ,  y / t  a r e  in  t h e  wave zone  t h e n  t h e  p h a s e  f u n c t i o n  S i n  (4)  h a s  s t a -  
t i o n a r y  p o i n t s  and F n d e c r e a s e s  as  t -z  f o r  t ~ ~. O u t s i d e  t h e  wave  zone  t h e  i n t e g r a l  (4 )  
has  no s t a t i o n a r y  p o i n t s  and F n d e c r e a s e s  e x p o n e n t i a l l y  as  t ~ ~. 

As is mentioned in [2], the wave zone is bounded by two closed curves, the leading and 
trailing fronts, in every case for approximately the real distributions N(z), U(z), V(z). 
Let us put I = k cos @, ~ = k sin~. Then the leading front is the curve which the point e = 
0(o,(~, ~)/0~, ~----0(on(~, ~)/0~ describes as k + 0 and 0 < ~ < 2~; the trailing front is the limit 
of the this curve as k § ~ and 0 < ~ < 2~. In the absence of flows [when (o,(%, ~) ------ (0n(k), 
k~= %2+ ~2] the leading front is the circle ~2 + 82 = C~, where C n is the maximal group 
velocity of the n-th mode (C n = max O(on/Ok ) and the trailing front shrinks to the origin = = 

k 
= 0 since ~n/~k + 0 as k + ~. For the trailing front analytic expressions are found in 

[2]. Determination of the shape of the leading front requires numerical computations. An 
approximate method for computing the leading front position is proposed in this paper, which 
has sufficient accuracy and reduces the volume of calculations by an order. 

Substituting %= k eos~, ~ : k sin~, (on = k~(k, ~) in (5), we obtain an expression for the 
leading front as k + 0 [2] 

z y 
a = -7- ---- ~ (r cos r  ~ (~;) sin r  ~ = - 7 - = ~ ( r 1 6 2 1 6 2 1 7 6 1 6 2  (6 )  

where ~(~) = ~n(~) is the n-th eigenvalue dependent on the parameter ~ for the spectral prob- 
lem 
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d [ ( ~ n _ F ( z ) )  2 q / ~ ] + N  2(z) q~=0;  ~on=0 ( z = 0 , - - H ) .  ( 7 )  dz 
I 

Here F(z) = Ucos~ + Vsin~ and N(z) is the Brunt-V~is~l~ frequency. The derivative ~ is 
expressed by a quadrature in terms of the eigenfunction ~n: 

t [ t 2 t 2 
~ ,  (r ---- - -  (~ - -  F)  [U sin r - -  V cos r ((pz) dz ( ~ .  F) ((pz) dz . 

Therefore, the numerical solution of the spectral problem (7) for all ~ must be found 
to compute the leading front. To reduce the volume of calculations substantially we use the 
perturbation method. We set U = eu(z), F ----- ev(z), F(z) ---- e[u cos~ q- v sin~] e/* and we seek the 
solution of the spectral problem (7) in the form of the series ~(~)= "qo "[" e~1 q-s2~2 q - . . . .  
r = ~o(z)~-8~1(Z, ~)~-82~2(z, ~))-~ .... Substituting the expressions written down into (7) we 
obtain 

. N 2 (z) 
L*~o = ~o~ + _-"-:V-~o = 0; (8 )  

2 t p 

L * ~  = - -  T o  [Oh - -  ]*) ~oz]~; ( 9 )  

2 , , , 1 ,9. ' " 
= - - -  [(n~ - ! ) ~ 1~  - - ~  [(n~ + 2n~no - 2/*nl + ! ) ~od~. (10 )  L*~2 ~o 

There follows ~n(0) = ~n(-H) from the boundary conditions in (7). However, this condition 
does not determine the function ~o, ~, ~2 uniquely since there results from (8) that ~0 is 
defined to the accuracy of a constant factor while ~n is determined to the accuracy of the 
solution of the homogeneous equation L~':~n = 0, i.e., to the accuracy of the component const • 
0 (z). To reduce this indeterminacy, we introduce the addltional condition ~n(0) = i �9 Then 

~z(0) = i and for ~nz(0) = 0 we obtain the boundary conditions 

' 0---- ' 0= 5~=o ( z = 0 , - - H ) ,  ~o,( ) t, ~,~( ) o (n>~t)  ( i i )  

for (8)-(10)�9 

The expression (8) is the equation for the eigenfunctions ~ in the absence of a flow, 
hence B0 = Cn, ~0-----~,(z)/~n~(0). The condition for solvability of (9) is orthogonality of its 
right side to the solution ~0(z) of the homogeneous equation�9 We obtain from this condition 

0 
2 

e~ h = ,, -r~ = A cos r + B sin ~p, 
0 

0 0 O 

, , i V ( ~ z ) ' d z ,  M (~oz) dz. A = ~ - ~  U(~~  d~, B = ~  . = 

--H --H --H 

And according to (6) we find parametric equations for the leading front 

Cx ='- ix  Y = ~ o s i n ~  + B, ( 1 2 )  t = ~ o C ~ 1 6 2  C y = - - F -  

Therefore, in a first approximation the leading front is a circle with radius q0t (i.e., 
with radius Cnt) and center x = At, y = Bt. In other words, in the first approximation the 
unperturbed leading front moves as a single whole at the velocity U = (A, B), where A and B 

t2 
are the mean values of the flow velocity components U(z) and V(z) taken with the weight(~0z ) . 
The circle i in Fig. I is the leading front for a medium without a flow, while 2 is the leading 
front when there is a one-dimensional shear flow in the medium and only the first approxima- 
tion is taken into account in the construction. 

We introduce a moving coordinate system x' = x - At, y' = y - Bt. The corrections to 
the first approximation for the leading front vanish at the coordinates t, x', y' and the cal- 
culations needed to construct the second approximation are simplified (we return to the orig- 
inal variables t, x, y in the final expression for the group velocity components). The expres- 
sion for q2 is obtained from the orthogonality condition of the right side of (I0) to the 
solution of the homogeneous equation ~0: 
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F i g .  4 

r m/sec 

0 0 

=~o Y 1"~'~zr j~l*=(~z) ~ ~ 
n, (~) = -" O �9 

="o j=(~,)'~" 
Here the function 11 is the solution of (9). Taking into account that II = 0 and f~ = 
ueos~ + rainS, we represent ~z in the form ~i-----~u eos~ + ~v sin~b, where ~u and ~v are solu- 

te ' ' 2 , , tions of the following equations L*~u= [U~az]z, L*~ =-~a[V~oz]z. 

Explicitly extracting the dependence of I"12 on the parameter ~ and going over to the 
group velocities Cx, Cy, we obtain 

CX = I]0 r ~2 "Jt" A -31- [ /4  1 - -  AI2 o COS 1~ (1 "31- s i a  l ~ ) - -  x41 o sin a ~; + AI ~ sin 2 r cos ~],  ( 13 ) 

n o ~o , Cy ----- ~0 sin ~ + B + [ 2 - -  B~ ~ sin ~ ( t  + cos ~ , ) - -  B~ cos , + B~ ~ cos ~ , sin ~],  

where 

o 0 

.41 = c~ ;'~,(o,Ua~; B ~ = c~ ;~,~o,va=; 
--H --H 

o o 

Ap = 81 ~ c ,  W((oz) '  d,.; .41" = B~ ~  c~ V V ( ~ , )  d,-; 
2TI o rl o 

--H --H 

lo cl  = B =  = - -  W ( g z ) ' a z ;  C , =  ( g z ) ' a =  . 2~a -H  

T h e r e f o r e ,  t h e  ma in  p a r t  o f  t h e  m a c h i n e  t i m e  t o  be  expended  i s  u s e d  t o  f i n d  t h e  f u n c -  
t i o n s  ~0,  ~z and t h e i r  d e r i v a t i v e s ,  a f t e r  wh ich  t h e  q u a d r a t u r e  f o r m u l a s  a r e  e v a l u a t e d .  The 
s e c o n d  a p p r o x i m a t i o n  (13 )  p e r m i t s  d e s c r i p t i o n  o f  t h e  wave f r o n t  movement  a s  a who le  and  i t s  
d e f o r m a t i o n  ( t h e  c u r v e  3 in  F i g .  1 i s  c o n s t r u c t e d  w i t h  t h e  s e c o n d  a p p r o x i m a t i o n  t a k e n  i n t o  
account). 
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A simple method of solving the spectral problem L*~ 0 = 0, ~0 = 0 (z = 0, -H) is pre- 
sented in [3]. The Brunt-V~isil~ frequency in this method is approximated by a piecewise- 
constant function, i.e., the whole interval of values I-H, 0] is divided into layers, in 
each of which the solution is written down in analytic form and the integration of (8) is 
reduced to converting the function and its derivative or the impedance Z = ~0/~z from one 
horizon to another over the whole layer. Then the equation for the eigenvalues has the 
form Z~ - Z~ H = 0, where Z~ H is the impedance converted from the bottom to the J-th horizon, 
while Z~ is the impedance converted from the surface to the same horizon. The number of the 
eigennumber is determined by the number of zeros at the appropriate eigenfunction. Inte- 
gration of (9) is performed by an analogous method, the solution in each layer is expressed 
in terms of the solution of the homogeneous equation and the right side of (9). A program 
is written on the basis of this method and the "exact" and approximate methods are compared. 
It is shown that for real (practically for all stable) flows the relative error in deter- 
mining the coordinates of the leading fronts by using the perturbation method for the first 
modes does not exceed 10% (this is totally adequate for the processing of full-scale data). 

As an illustration of the influence of shear flows on internal waves, the leading wave 
fronts of the first and second internal wave modes are represented in Fig. 2 for a medium 
with a two-dimensional shear flow (solid curve). The distributions of the Brunt-V~is~l~ 
frequency and the flow velocity components were taken from results of measurements and are 
presented in Figs. 3 and 4. Corresponding fronts for media without flows are shown by 
dashed lines for comparison. 

It is seen from Figs. i and 2 that the presence of flows results in a substantial change 
in the wave front location, and therefore, of the whole internal wave field also. These 
changes can be computed by using the presented sufficiently accurate and simple algorithm. 
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DISPLACING OIL WITH HOT WATER AND STEAM 

A. F. Zazovskii UDC 532.546+622.276.65 

Exact solutions are derived via the approach of [i-3] for frontal oil displacement by 
steam or steam-water mixtures [4] in the large-scale approximation, i.e., where we neglect 
capillary, diffusion, and nonequilibrium effects as well as thermal conduction in the stratum 
in the displacement direction. It is assumed that the water and steam when present together 
in the porous medium have equal mobilities. Then three-phase flows, if they occur, amount to 
two-phase ones, with the aqueous phase a mixture of water and steam. The thermal-wave struc- 
ture is determined by the nonlinear temperature dependence for the specific heat content in 
the generalized water phase, which is independent of the saturation distribution. For ex- 
ample, if saturated steam is pumped into the stratum, the temperature alters stepwise, with 
the step corresponding to the steam condensing to cold water. In superheated-steam displace- 
ment, there is a two-stage temperature distribution, with a slow front in which the steam 
cools to the transition point and a more rapid condensation one. The relation between the 
displacing capacity and the specific heat content is of turning-point type: it is maximal for 
hot water and decreases on going to cold water and steam. Therefore, one cannot construct 
the solution in the large-scale approximation without considering the internal step struc- 
ture corresponding to the condensation front, where the evolutionary conditions are not 
obeyed. The condition for a continuous internal structure is related to the diffuseness in 
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